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FOREWORD

This report describes part of a comprehensive and continuing program of re-

search concerned with advancing the state-of-the-art in remote sensing of the

environment from aircraft and satellites. The research is being carried out for the

NASA Lyndon B. Johnson Space Center, Houston, Texas, by the Environmental Re-

search Institute of Michigan (ERIM), formerly the Willow Run Laboratories of

The University of Michigan. The basic objective of this multidisciplinary pro-

gram is to develop remote sensing as a practical tool to provide the planner

and decision-maker with extensive information quickly and economically.

Timely information obtained by remote sensing can be important to such

people as the farmer, the city planner, the conservationist, and others con-

cerned with problems such as crop yield and disease, urban land studies and

development, water pollution, and forest management. The scope of our pro-

gram includes: (1) extending the understanding of basic processes; (2) dis-

covering new applications, developing advanced remote-sensing systems, and

improving automatic data processing to extract information in a useful form;

and also (3) assisting in data collection, processing, analysis, and ground-truth

verification.

The research described here was performed under NASA Contract NAS 9-

9784, Task B2.12, and covers the period from November 1, 1971 through January

31, 1973. Dr. Andrew Potter has been Technical Monitor. The program was

directed by R. R. Legault, Associate Director of ERIM, and by J. D. Erickson,

Principal Investigator and Head of the Multispectral Analysis Section. The

ERIM number for this report is 31650-151-T.
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ABSTRACT

Adaptive data processing procedures are applied to the problem of classi-
fying objects in a scene scanned by multispectral sensor. These procedures
show a performance improvement over standard nonadaptive techniques. Some
sources of error in classification are identified and those correctable by adaptive
processing are discussed. Experiments in adaptation of signature means by
decision-directed methods are described. Some of these methods assume cor-
relation between the trajectories of different signature means; for others this
assumption is not made.
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INVESTIGATIONS IN ADAPTIVE PROCESSING
OF MULTISPECTRAL DATA

SUMMARY

Adaptive procedures whereby object signatures may be modified during the classification

of multispectral data were investigated. The recognition performances of these procedures

were compared with each other as well as with that of a typical nonadaptive classification

scheme. The adaptive procedures improved recognition performance significantly.

The adaptive procedures tested modified only the means of the signature distributions, and

were decision-directed in that the classification of a data point affected the means modification.

In one set of procedures (the noninteractive), only the mean of the recognized data point was

modified; in another set (interactive) all of the means were updated on the basis of a single rec-

ognized point under the assumption that the trajectories of the means are correlated. Expo-

nentially weighted running estimates of signature means as well as posterior probability weighted

estimates of signature means were tested in both noninteractive and interactive versions. The

noninteractive procedures showed some superiority; however, this comparative result may have

resulted from an oversimplified correlation of the signature trajectories assumed for the inter-

active procedure.

Sources of error in the classification of multispectral data are discussed; those types best

reduced by preprocessing transformations are named as well as those best minimized by adap-

tive processing. Potentially rewarding paths for continued effort in adaptive multispectral data

processing are recommended.

1
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2

INTRODUCTION

Among various remote sensing techniques developed for the purpose of automatically de-

tecting materials on the Earth's surface, one of the more useful is that of multispectral scan-

ning. Typically, an aircraft flying over the area to be sensed carries an imaging scanner.

Picking up radiance from the scene, the scanner transmits its output to a spectrometer capable

of resolving this radiance into many spectral bands between the ultraviolet and the thermal

infrared. After detection, these bands of radiant energy may be recorded as data for subsequent

processing by an investigator. By processing the data, we mean applying procedures, algorithms,

and computations to the detector outputs in order to provide useful information. For example, an

investigator may want to identify the various crop types, their condition, and the total acreage

planted to each type. This is often done in digital or analog processing by using a likelihood

ratio classification procedure in which fixed parameters for several signature distributions

are determined from training sets and extrapolated (or interpolated) from these sets over the

complete scene.

Sources of difficulty and error in multispectral data analysis stem mainly from natural

variabilities normally found not only in scene composition, but also in the atmosphere and in

the incident solar irradiance. For purposes of analysis these sources may be grouped into

those encountered (1) along the direction of scan and (2) along the flight path. Along the direc-

tion of scan, changes in topography, the sun position, scanner look angle, and atmospheric scat-

tering are principal causes of radiance variations. Along the flight line, more slowly varying

functions of time predominate -principally instrument drift, changes in solar elevation, changing

meteorological conditions and, over large distances, the changes in latitude (and even season).

2.1. NONADAPTIVE APPROACHES

Toward minimizing the effects of these error sources, we have tried several approaches.

The problem of variability along the scan line has been attacked by constructing additive and

multiplicative functions fitted to the observed effects; guidance has been found in modeling

studies of the atmosphere and in data on the scattering characteristics of typical objects in the

scene [1]. This approach has frequently reduced previously experienced variations along the

scan line by factors of from 2 to 4, which often allows signature distributions to be separated

more effectively. Drift errors have been corrected by controlling gain and offset as functions

of scanner-contained calibration sources.

2
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Variability in the scene, however, remains a substantial cause of error, and arises from

several sources. In the first place, the objects to be mapped are not uniform-e.g., corn in

a given scene may be in various stages of maturity, may have been planted with various row

spacings, and also may have been damaged by weather, insects, or poor cultural practices.

Thus an object is often multimodally distributed. In addition, such an object must be recog-

nized in the presence of multimodally distributed objects belonging to other classes. Nonethe-

less, because these multimodal distributions sometimes result from the deterministic errors

described earlier, the number of modes can often be reduced by factors of 2 or 3 by correcting
such errors.

Changing meteorological conditions can also bring about changes in observed radiances;

these result in random variations extending over greater areas and may amount to parameter

shifts of 20 to 50%. Such variations make it necessary to correct the estimates of distribution

parameters in order to recognize objects successfully.

Two principal forms of adaptation, then, may be applied to multispectral data: First,
functions of scanner look angle may be adapted to the scene topography and to changing solar
elevation [1]. Second, errors resulting from drifts of many kinds and from changing scene
conditions may be adaptively corrected by "tracking" the scene parameters (signature means)
as objects are recognized.

This report describes adaptation of the second kind, above-i.e., adaptive modification of
scene distribution parameters to improve the recognition accuracy of a classifier.

2.2. AN ADAPTIVE APPROACH

Scene variability as sensed by a multispectral scanner indicates that the radiance of scene

objects depends to a considerable extent on natural causes. This is illustrated in Fig. 1 and
well described by Kriegler, et al. [2]. These effects can be corrected by pre-processing tech-
niques in which functions of scan angle or functions of spectral bands are used to reduce dis-
tribution overlap and thus lessen the sensitivity to these variations. An underlying randomness,
however, is not correctable in this manner. Because variations in natural conditions tend to
affect collocated objects in the same manner, this randomness is not unstructured-e.g., if
the scene irradiance decreases, all objects are proportionately affected (see Fig. 2); or if an
instrument bias shift occurs, a similar result is observed. As a result, there is a tendency

for a cluster of distributions to preserve its structure when modified by conditions of changing

irradiance; this is illustrated in Fig. 3. The parameters of all distributions are affected simi-
larly as a variation occurs and hence can be described as following similar trajectories in
spectral space. The object of modeling and analysis is to describe and predict these trajec-

tories. A first approximation is to assume that trajectories follow straight lines which con-

verge to the zero radiance origin of the space (in the noise-free case). For such a trajectory
3
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FIGURE 1. POSSIBLE VARIATIONS OF TWO DISTRIBUTIONS (NOISELESS CASE )
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the signature distributions would fill a conical space, thus preserving their structure based on

the spectral reflectances of the objects observed. Here a spectrally uniform attenuation of

irradiance is assumed.

Thus if a classifier can recognize samples of a scene affording some acceptable spatial

density for materials of interest, the statistical parameters of all the distributions entered into

the classifier may be adaptively modified in two ways: (1) on the basis of each classification

and (2) on the basis of predicted trajectories. The spatial density of materials being classified

must be such, of course, that the spatial frequency of scene variation is adequately sampled.

Since the problem of theoretically determining the utility of an algorithm based on this

model appears formidable, practical experiments were conducted instead to evaluate the vari-

ous algorithms.

7
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3

ADAPTIVE ALGORITHMS

The task of updating the signatures can be achieved through either of two approaches. One

approach is to modify the individual distribution parameters based on changes detected in sta-

tistical parameters of the overall scene. Such changes could be detected by suitably averaging,

or filtering, the data-as in certain preprocessing techniques now routinely employed. These

averaging techniques can best handle systematic variations common to all scene materials;

they do not, however, permit the signatures for each scene material to be independently up-

dated. The second approach allows independent updating to be performed without the necessity

of additional a priori information (ground truth). Algorithms based on this approach were de-

rived and tested.

Basically, with crop material on the ground scanned by the multispectral sensor at an in-

stant of time, the processing problem is to identify and locate the different ground crops based

on the signals generated by the sensing instrument. We assume that the original analog signals

have been smoothed and digitized. We further suppose that preprocessing has been performed

to eliminate some of the variation caused by scan angle effect. Thus we have signals y ,u, v
1 - u _ U, 1 _ v _ V representing the output of a multispectral scanner relative to a scene. The

u, v coordinates take on integral values and each pair represents a resolution cell of the scene.

The u is called the point coordinate and v the line coordinate; y is an m-vector, where m is the

number of channels of scanner data being processed. The digitized signals, y, are stored on mag-

netic tape in sequence according to lowest u coordinate and then lowest v coordinate. It is con-

venient to put the signals in linear order by

Xn u, v

where

n = (v - 1)U + u and 1 ! n < UV

The purpose of processing the data is to classify each data point X as being from one ofn
r classes representing different materials in the scene. Since all materials in a scene are not

of interest, or because of practical limitations, some class is given the "other" classification

and designated the null class. This null class cannot be represented by a convenient distribu-

tion. For the classes of interest there is a priori information available about the spectral

distribution of signals in each. This information normally takes the form of training sets con-

taining predetermined (known) samples of signals from each class. These training sets are

8
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used to estimate the parameters of a Gaussian distribution for each class. Thus each class is

associated with a signature distribution.

3.1. NONADAPTIVE PROCEDURE

A typical nonadaptive procedure for classifying signals is as follows. The signal X is

classified as material j if

fj(X) f i(X) for all i (1)

and

Q (X) < T (2)

where fi is the density of the Gaussian distribution associated with the i-th class and Qi(X) is

the quadratic form occurring in this density function. T is a threshold parameter. The T test,
required because of the "other" classification, is a chi-square test. Here, if Eq. (2) is not

satisfied for any j, the point X is classified as "other."

3.2. ADAPTIVE PROCEDURES

We know that the parameters of the signature distributions vary over the scene; reasons

for this variability are given in Section 2.1. Adaptive processing to permit changes in these

signature parameters would appear to offer hope for improving classification accuracy. But

no extant theory appears directly applicable to our specific problem. So we employed existing

theory to guide our choice of adaptive procedures to be tested empirically.

Thus far we have adapted only the means of the signature distributions, utilizing what the

literature calls "decision-directed" schemes wherein recognition decisions figure in the update

process. To date, we have experimented with four adaptive procedures which, for convenience,
we refer to as:

Exponentially weighted running estimates

Exponentially weighted running estimates with interaction

Posterior probability weighted estimates

Posterior probability weighted estimates with interaction

In all of these procedures the data point X is classified by the rules of Eqs. (1) and (2). How-

ever, the means Ai, 1 < i _ r, may change from point to point.

9
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3.2.1. EXPONENTIALLY WEIGHTED RUNNING ESTIMATES

With this procedure, if X has been recognized as being in class j, then the present mean

A. of this class is updated to the new value A' by the relation

A = (1- A. + X (3)

where W is a weighting constant. The term exponential weighting [3] is based on the fact that

if Z 1, Z 2 , . . . , Z are the first f points in the Xn sequence recognized as being in a particular

class, and A is the k-th updated mean, then A is approximated by

A T Xke (4)

k=O

where Xo is the initial value of the mean. As can be seen from Eq. (4) W also corresponds to

an exponential decay rate. Abramson and Braverman [4] derive a formula in the form of Eq. (3)

for tracking a slowly varying mean of a Gaussian distribution under certain conditions.

3.2.2. EXPONENTIALLY WEIGHTED RUNNING ESTIMATES WITH INTERACTION

Because variation of signature distributions in samples of the same material increases

with increased spatial separation, the updating procedure will be less effective if there are

long intervals in the Xn sequence which do not represent a particular material. This situation

corresponds to having a material located in some part of the scene which is remote from any

other concentration of this material in the scene. To deal with this problem, knowledge con-

cerning the trajectory of the set of signature means was used to modify the update procedure.

It was assumed that the following ratio remained constant along this trajectory: the ratio of

each component of a signature mean to the average of that component over all signature means.

Formally,

A = piAi (5)

where A denotes the average signature mean at any time, A. is the signature mean of the i-th

class, and pi, 1 - i 5 r is a diagonal matrix obtained by using Eq. (5) after initial signature

means Ai have been computed from training sets. In the interactive procedure, not only is the

recognized class mean j updated in Eq. (3) but also each Ai, i ; j, is then updated by the formula

A =piAi i j (6)

where

A =p.A (7)

10
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3.2.3. POSTERIOR PROBABILITY WEIGHTED ESTIMATES

In discussing this procedure it is convenient to first define the following:

Ai, 1 < i < r = the present value of the mean of i-th signature

M. = covariance matrix of i-th signature

X = present observed point

1 -1/2 X-AMi M;l(X-Ai ))
Li(X) = e1/2 e

L.(X)
R.(X) = L

1 L. (X)

Qi(X) = < x - Ai, Mi1(X - Ai)>

<u, v> = inner product of the vectors u and v

Now if the a priori probability that X belongs to i-th class is l/r, then R.(X) represents

the posterior probability that X belongs to class i. Thus R.(X) is a measure of the confidence

we have in correct identification after X has been classified by Eqs. (1) and (2). This measure

of confidence may be reflected in determining the weight used in updating the means. Here is

one way of applying such a confidence measure: The point X is classified in class j if

L.(X) _ L.(X) 1 _ i < r (8)

and

Q (X) < T1 (9)

If Eq. (9) is not satisfied for any j, the point X is classified as "other." A. is updated if in addi-

tion to Eqs. (9) and (10)

Qj(X) < T 2  (10)

Then the updated value A' of A. is

R.(X) R.(X)
A: = 1- A. + -- X

i W W

We call 71 the recognition parameter and T 2 the update parameter. Then because we usually

require a more stringent condition to be satisfied for update than for recognition, we specify

11
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72 < T 1 . The decay rate parameter W is retained to provide more flexible control over the

influence of observation X on the present mean. It is seen that the a priori probabilities of the

occurrence of any class are taken to be equal. Subsequent investigation, however, may lead to

modification of this premise.

3.2.4. POSTERIOR PROBABILITY WEIGHTED ESTIMATES WITH INTERACTION

For reasons given in Section 3.2.2, the interactive procedure was appended to the preceding

procedure by using Eqs. (6) and (7) when the conditions of Eqs. (8), (9), and (10) are satisfied

for some j.

3.3. REMARKS ON ADAPTIVE PROCEDURES

The four updating procedures just described provide a basis for continuing investigation of

adaptive processing as it may be applied to multispectral data. Some possible modifications are

apparent: use of a priori probabilities of class occurrence; use of conditional probabilities to

take into account that the point Xn is likely to be in class j if the preceding point Xn_ 1 was in

class j (especially in agricultural scenes); and updating of covariance matrices of signatures

as well as the means. It must be borne in mind that inclusion of these modifications would in-

crease processing time.

12
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4

EXPERIMENTAL RESULTS

We now present the results of experiments using the algorithms defined in Section 3. For

purposes of comparison these experiments were performed with scanner data from the same

scene. These data were gathered on a flight near Lafayette, Indiana at 1400 hours on June 30,

1966, at an altitude of 3500 ft. The associated ground-truth map appears in Fig. 4.

4.1. NONADAPTIVE PROCESSING

A study and experiment was performed previously [5] on recognizing wheat in this scene

which was at first thought to be well described by non-time varying statistics. This wheat

recognition was satisfactory over the length of the run (about 4 miles) because this result was

actually obtained with two distributions describing wheat, one at each end of the run and des-

ignated in Fig. 5 as Field A and Field B. In addition the recognition was affected by radiance

variations along the scan line. Figure 5a shows the results of recognition processing using a

single distribution, that of Field A, to recognize wheat; a gradual deterioration in recognition

will be noted over the run from South (bottom) to North (top). Reasons for this were not clear

at the time, but it was postulated that an atmospheric effect similar to that shown in Fig. 2 may

have existed.

An investigation of the data from these two fields indicated that a large shift occurred in

the means (A mean) of the distribution. This is summarized in the following table:

Wavelength (pm) .44-.46 .48-.50 .55-.58 .62-.66 .72-.80

A Mean (volts) .25 .44 .35 .499 .545

Field A - Std. Deviation .086 .146 .100 .125 .160
(volts)

A Mean/a 2.9 3.06 3.5 4.0 3.4

4.2. ADAPTIVE EXPERIMENTS-ONLY WHEAT SIGNATURE MEAN UPDATED

The initial adaptive experiment [6, 7] was based on the procedure described in Section 3.2.1

with the modification that only the wheat signature was updated. W was set at 300 data points.

We actually used the knowledge that there were about 4800 wheat points in the scene and that

about 3000 were recognized with the nonadaptive scheme. The W figure of 300 appeared small

enough to permit suitably rapid modification of the wheat signature. This initial adaptive experi-

ment produced the results shown in Fig. 4b. The improvement in recognition is apparent, actu-

ally showing an increase from 186 acres to 252 acres, which gives an overall accuracy of 83%

vs. 62%. Improvement is even more dramatic if the training field is not included in the compu-

tations. 13
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The results can be further analyzed by comparing the recognition map in Fig. 5b with the

ground "truth map" of Fig. 4. Some false classification occurs in two oat fields just below the

two small fields located in the left center of the map; this amounted to 30 samples in the lower

field and approximately 100 samples in the upper field. Since only the means of wheat were

being adapted rather than those of other distributions (corn, soybeans) some capture of the

process was expected. The fixed signature produced 13 samples in the lower field and about

35 samples in the upper field. Some capture occurred.

Since the spatial distribution of wheat is not uniform, one would expect the angular effect

to be also reduced; this reduction can be observed, particularly in the upper right-hand field

which was known to have a large angular dependence.

A simple experiment was also conducted to determine the ability of the procedure to over-

come a transient error. With the wheat mean vector obtained at the end of the run used as an

initial estimate,a classification run was made. Results are shown in Fig. 6. No discernible

difference exists after the first 600 wheat points, which is twice the weighting constant. A dif-

ference of 202 elements exists between the two adaptive runs. The estimates of the means

agreed to the fourth decimal place at the end of the run.

4.3. ADAPTIVE EXPERIMENTS -WHEAT, CORN, AND SOYBEANS UPDATED

Results of our experiment in adapting only the wheat signature led to the belief that results

would be improved by also adapting other signatures. In the next set of experiments the wheat,

corn, and soybean means were updated using the noninteractive procedure of Section 3.2.1. The

threshold parameter, 7, of Eq. (2) was set at 25, but the decay rate, W, was varied from 100 to

1000. Results showed a tendency for the soybean signature to capture pasture.

We also tried the interactive algorithm described in Section 3.2.2. Results showed a ten-

dency for the corn signature to capture soybeans. This capture effect was pronounced on one

side of the scene along the flight line and evident in both the interactive and noninteractive

experiments.

4.4. EXPERIMENTS WITH REDIGITIZED DATA

At this stage it appeared advisable to redigitize* all 12 spectral channels of the analog

data and correct for the dynamic dark level shifts. Angle correction procedures were applied

*Our reason for redigitizing was that the original digitization had been done on only 6 non-
adjacent spectral bands for only the video portion of the data; the dark level and calibration
portions were not digitized. Thus, no channel selection procedure was at that time employed
nor could dark level corrections be made. All subsequent adaptive experiments were performed
on the digitized 12-channel data.
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Wheat Field B
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.............. 
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(a) Initial Signature From (b) Initial Signature Using
Wheat Field A Previous Update

FIGURE 6. WHEAT RECOGNITION RESULTS SHOWING THE CON-
VERGENCE OF THE ADAPTED SIGNATURE
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first. Then spectral channel selection techniques were utilized to select a subset of the six

spectral channels exhibiting best separation between the corn and soybean signatures (which

tend to be close to each other).

In the next set of experiments, the parameter, T, and the decay rate, W, were varied. For

these experiments the pasture signature was updated as well as those of soybeans, corn, and

wheat. Based on our previous experience with capture of one signature class by another class,

tighter (smaller variance) signatures were desired and obtained. One reason for this reduced

variance had to do with application of the angle correction techniques. Another reason was that

anomalies in the training fields were avoided when initial signatures were calculated.

Figure 7 shows results for the exponentially weighted noninteractive and interactive pro-

cesses. W was set at 300 and T was set at 25 for both these experiments.

Some problems were immediately evident. In the noninteractive case a capture process

seemed to be taking place, thus causing distributions to be confused with each other as pro-

cessing progressed. Also, the percentage of wheat detected was low.

In the interactive process signatures are captured in a different manner. As data processing

continues, variations resulting from more frequently occurring distributions induce a motion of

the mean structure which prevents recognition and adaptation by distributions occurring less

frequently. In other words, distributions (such as wheat) occur so infrequently that the forced

(interactive) mean structure variation does not adequately reflect the actual change of such a

distribution.

The means as a function of distance along the flight path are plotted in Fig. 8 for one of

the near-infrared spectral bands. Here, for the case of the noninteractive algorithm (Fig. 8b)

several crossovers occur in the mean plots. This type of crossover occurred for each of the

several wavelengths employed. The mean plot for the interactive technique (Fig. 8a) indicates

that the distribution for objects with greatest spatial extent tends to control the means; this

results in poorer recognition of objects having lesser spatial extent.

To improve the recognition percentage and minimize captures, the rejection limit (threshold

parameter) was increased to T = 100 and the weighting term to W = 1000. Figures 9a and 9b show

results for the noninteractive and interactive cases, respectively. These results are satisfactory

except that toward the end of the run the classifications of corn and soybeans tend to be confused.

This problem may be analyzed by inspecting the mean plots shown in Fig 10. In the noninteractive

plots (Fig. 10b) which are substantially correct toward the end of the run, we see that the soybean

mean shows considerable variation, actually crossing those of corn and wheat in some spectral

bands. Since this cannot happen using the interactive algorithm, recognition errors may have

occurred. Note that the wheat field in the lower left corner is missed when the parameter T = 25
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FIGURE 8. PLOT OF MEAN VALUE VARIATIONS ALONG
THE FLIGHT PATH. (Exponentially weighted running esti-

mates with W = 300, 7 = 25.)
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(see Fig. 7), but the same field is picked up for T = 100 (Fig. 9). Also note the poor recognition

of wheat field B in Fig. 7, and the substantially improved recognition of this field in Fig. 9.

For experiments using parameter values T = 25 and W = 150, results (not illustrated) were

qualitatively similar to the results obtained in using the values 7 = 25 and W = 300 (Fig. 7) for

both the noninteractive and interactive cases.

Results with parameter settings T = 60 and W = 1000 (not illustrated) were superior to

results for T = 25, W = 300 (Fig. 7) but inferior to results for T = 100, W = 1000 (Fig. 9). Only

about 8 to 10% of the wheat field in the lower left hand corner of the scene was recognized for

the noninteractive and interactive cases.

Runs were then made using the adaptive procedures of Section 3.2.3 and Section 3.2.4.

(Both of these procedures are based on posterior probability weighted estimates, the second

being the interactive version of the first.) Recognition maps for parameter settings 71 
= T2 = 100

and W = 1000 are shown in Figs. lla and llb for the noninteractive and interactive cases, respec-

tively. Comparison of these maps* with Figs. 9a and 9b (the corresponding runs for exponentially

weighted running estimates) shows only negligible differences. Some difference can be seen

within the boundaries of rectangular fields where there is a large degree of confusion between

corn and soybeans. For corn recognition the posterior probability weighted estimates offer a

slight improvement over the exponentially weighted estimates. Mean plots for these runs are

also almost identical. From this evidence one can infer that the value of R.(X) is close to 1

when the mean A. is updated. It has been observed on the SPARC processor that usually one

L.(X), say L.(X), is much larger than all the others; this would result in R.(X) being close to 1.

When the decay rate W was increased to 2000, results for the noninteractive case of pos-

terior probability weighted estimates became degraded over those for W = 1000, but in the

interactive case there was little change. For the interactive case degradation approaching the

nonadaptive results occurred for W = 4000. The reason for this difference is that in the inter-

active case the signatures are updated more frequently.

*To identify corn and soybean fields, see the ground-truth map (Fig. 4).
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5

CONCLUSIONS AND RECOMMENDATIONS

It has been demonstrated that simple adaptation of the signature means yields greatly im-

proved recognition performance over the usual (nonadaptive) schemes for processing multi-

spectral data. Previous attempts to compensate for varying signatures over a scene resulted

in the characterization of a single material by either a multimodal distribution or several uni-

modal distributions. That approach requires a number of training sets for each material dis-

tributed over the scene to permit signature estimation. Also, great effort and expense is re-

quired to gather ground truth information, so this approach does not appear to be rewarding.

In addition, processing time is increased in proportion to the number of modes of signature

distribution, or to the number of distributions used to represent a single material.

Generally, the noninteractive procedure yielded somewhat superior results over corre-

sponding interactive procedures, although in some instances the interactive procedure assisted

in resolving confusion between corn and soy. The present interactive approach assumes unity

correlations between the trajectories of the various signatures. This does not permit crossover

of components of different signature means. However, the crossover phenomenon still occurs.

It would be desirable to experiment with interactive schemes of less than unity correlation be-

tween trajectories that would permit crossovers. Further, interactive schemes should be de-

vised where interaction between the trajectories of the means is not limited to interaction be-

tween corresponding spectral components.

No significant difference was found between the effectiveness of exponentially weighted

running estimates and that of posterior probability weighted estimates. This is because the

posterior probability R.(s) is usually close to 1. Consequently, the points X which cause the

greatest changes in the mean upon update are those which are farthest away, and thus have the

highest probability of being classified incorrectly. Other procedures which use weights to ex-

press confidence in the correctness of classification should be tested. The posterior probability

weight scheme is that sort of scheme, but in practice the distribution of R.(x) turns out to be

too flat.

Although preprocessing techniques reduce angular effects in the data, these effects remain

troublesome. One can view the variation in signatures as being two-dimensional, one dimension

along the flight line and the other along the scan line. It would be desirable to test adaptive

schemes that explicitly handle both of these effects. In order to achieve these results more

effectively, the adaptive techniques should be based on a more theoretical framework rather

than to continue the more empirical method of conducting adaptive experiments. It may be
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possible to mold the Kalman-Bucy theory into a decision-directed scheme for this purpose [8].

However, application of this theory usually entails enormous computation and this aspect might

neutralize its usefulness in multispectral processing.

Up to the present, the adaptive experiments have all been performed on a single data set.

It is recommended that the adaptive schemes be tested on many other data sets collected over

extended areas to determine whether results obtained to date are universal in nature. The pro-

cessing of many such data sets on a conventional digital computer can take a prohibitively long

time and be very expensive. The best mechanization for performing these experiments may be

a hybrid processor [9].
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